淺談污水處理工藝之厭氧技術(shù)
廢水處理的厭氧生物處理技術(shù)是在厭氧條件下,兼性厭氧和厭氧微生物群體將有機物轉(zhuǎn)化為甲烷和二氧化碳的過程,又稱為厭氧消化。
厭氧生物處理技術(shù)在水處理行業(yè)中一直都受到環(huán)保工作者們的青睞,由于其具有良好的去除效果,更高的反應速率和對毒性物質(zhì)更好的適應,更重要的是由于其相對好氧生物處理廢水來說不需要為氧的傳遞提供大量的能耗,使得厭氧生物處理在水處理行業(yè)中應用十分廣泛。
一般來說,廢水中復雜有機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子有機物由于其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中典型的有機物質(zhì)比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,淀粉被分解成麥芽糖和葡萄糖,蛋白質(zhì)被分解成短肽和氨基酸。分解后的這些小分子能夠通過細胞壁進入到細胞的體內(nèi)進行下一步的分解。
(2)酸化階段:上述的小分子有機物進入到細胞體內(nèi)轉(zhuǎn)化成更為簡單的化合物并被分配到細胞外,這一階段的主要產(chǎn)物為揮發(fā)性脂肪酸(VFA),同時還有部分的醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等產(chǎn)物產(chǎn)生。
(3)產(chǎn)乙酸階段:在此階段,上一步的產(chǎn)物進一步被轉(zhuǎn)化成乙酸、碳酸、氫氣以及新的細胞物質(zhì)。
(4)產(chǎn)甲烷階段:在這一階段,乙酸、氫氣、碳酸、甲酸和甲醇都被轉(zhuǎn)化成甲烷、二氧化碳和新的細胞物質(zhì)。這一階段也是整個厭氧過程最為重要的階段和整個厭氧反應過程的限速階段。
厭氧技術(shù)發(fā)展過程大致經(jīng)歷了三個階段:
第一階段(1860-1899年):簡單的沉淀與厭氧發(fā)酵合池并行的初期發(fā)展階段。這個發(fā)展階段中,污水沉淀和污泥發(fā)酵集中在一個腐化池(俗稱化糞池)中進行,泥水沒有進行分離。
第二階段(1899-1906年):污水沉淀與厭氧發(fā)酵分層進行的發(fā)展階段。
第三階段(1906-2001年):獨立式營建的高級發(fā)展階段。這個發(fā)展階段中,沉淀池中的厭氧發(fā)酵室分離出來,建成獨立工作的厭氧消化反應器。
與此相對應的是,厭氧生物處理技術(shù)的反應器主體也經(jīng)歷了三個時代。
第一代厭氧反應器是以普通厭氧消化池(CADT),厭氧接觸工藝(ACP)為代表的低負荷系統(tǒng)。
第二代反應器是20世紀60年代末以在反應器內(nèi)保持大量的活性污泥和足夠長的污泥齡為目標,利用生物膜固定化技術(shù)和培養(yǎng)易沉淀厭氧污泥的方式開發(fā)出的。如厭氧濾器(AF)、厭氧流化床(AFB)、厭氧生物轉(zhuǎn)盤(ARBCP)、上流式厭氧污泥床(IAASB)、厭氧附著膨脹床(AAFEB)等。其中UASB反應器為應用最廣的反應器,在其為代表的第二代反應器的研究與應用的基礎(chǔ)上開發(fā)出了新一代反應器。
第三代厭氧反應器是在將固體停留時間和水力停留時間相分離的前提下,使固液兩相充分接觸,從而既能保持大量污泥又能使廢水和活性污泥之間充分混合、接觸以達到真正高效的目的。目前研究較多的有:厭氧顆粒污泥膨脹床(EGSB)、厭氧內(nèi)循環(huán)(IC)等。
在此,檢驗介紹幾種應用比較廣泛的厭氧技術(shù)
1、厭氧生物濾池
厭氧生物濾池的構(gòu)造與一般的生物濾池相似,池內(nèi)設(shè)填料,但池頂密封。廢水由池底進人,由池頂部排出。填料浸沒于水中,微生物附著生長在填料之上。濾池中微生物量較高,平均停留時間可長達150d左右,因此可以達到較高的處理效果。濾池填料可采用碎石、卵石或塑料等,平均粒徑在40mm左右。
2、厭氧接觸工藝
厭氧接觸工藝又稱厭氧活性污泥法,是在消化池后設(shè)沉淀分離裝裝置,經(jīng)消化池厭氧消化后的混合液排至沉淀池分離裝置進行泥水分離,澄清水由上部排出,污泥回流至厭氧消化池。這樣做既避免了污泥流失又可提高消化池容積負荷,從而大大縮短了水力停留時間。厭氧接觸工藝的一般負荷:中溫為2-10kgCOD/(m3˙d),污泥負荷≤0.25kgCOD/(kgVSS˙d),池內(nèi)的MLVSS為10-15g/L。
3、UASB
ASB反應器污泥床區(qū)主要有沉降性能良好的厭氧污泥組成,濃度可達到50-100g/L或更高。沉淀懸浮區(qū)主要靠反應過程中產(chǎn)生的氣體的上升攪拌作用形成,污泥濃度較低,一般在5-40g/L范圍內(nèi),在反應器的上部設(shè)有氣(沼氣)、固(污泥)、液(廢水)三相分離器,分離器首先使生成的沼氣氣泡上升過程偏折,穿過水層進入氣室,由導管排出。脫氣后混合液在沉降區(qū)進一步固、液分離,沉降下的污泥返回反應區(qū),使反應區(qū)內(nèi)積累大量的微生物。待處理的廢水由底部布水系統(tǒng)進入,澄清后的處理水從沉淀區(qū)溢流排除。
在UASB反應器中能得到一種具有良好沉降勝能和高比產(chǎn)甲烷活性的顆粒厭氧污泥,因而相對其他的反應器有一定優(yōu)勢:顆粒污泥的相對密度比人工載體小,靠產(chǎn)生的氣體來實現(xiàn)污泥與基質(zhì)的充分接觸,省卻攪拌和回流污泥設(shè)備和能耗;三相分離器的應用省卻了輔助脫氣裝置;顆粒污泥沉降性能良好,避免附設(shè)沉淀分離裝置和回流污泥設(shè)備:反應器內(nèi)不需投加填料和載體,提高容積利用率。
4、EGSB
20世紀90年代初,荷蘭Wageningen農(nóng)業(yè)大學開始了厭氧膨脹顆粒污泥床(簡稱EGSB)反應器的研究。Lettinga教授等人在利用UASB反應器處理生活污水時,為了增加污水污泥的接觸,更有效地利用反應器的容積,改變了UASB反應器的結(jié)構(gòu)設(shè)計和操作參數(shù),使反應器中顆粒污泥床在高的液體表面上升流速下充分膨脹,由此產(chǎn)生了早期的EGSB反應器。EGSB反應器實際上是改進的UASB反應器,區(qū)別在于前者具有更高的液體上升流速,使整個顆粒污泥床處于膨脹狀態(tài),這種獨有的特征使其可以具有較大的高徑比。
EGSB反應器主要由主體部分、進水分配系統(tǒng)、氣液固三相分離器和出水循環(huán)等部分組成,結(jié)構(gòu)。其中,進水分配系統(tǒng)是將進水均勻分配到整個反應器的底部,產(chǎn)生一個均勻的上升流速:三相分離器是EGSB反應器最關(guān)鍵的構(gòu)造,能將出水、沼氣和污泥三相有效分離,使污泥在反應器內(nèi)有效持留;出水循環(huán)部分是為了提高反應器內(nèi)的液體表面上升流速,使顆粒污泥與污水充分接觸,避免反應器內(nèi)死角和短流的產(chǎn)生。
5、IC
IC內(nèi)循環(huán)厭氧反應器為荷蘭帕克公司的專利產(chǎn)品,目前帕克公司在全球有300多臺IC反應器得以應用。相對于UASB只在頂部有一級三相分離器,IC內(nèi)循環(huán)反應器具有兩級三相分離器。
IC反應器實際上由兩級UASB構(gòu)成,底部UASB負荷高,頂部負荷低。因為在一級分離時收集了大量沼氣,其對廢水的擾動減少,使得在二級三相分離中得到更好的氣、水、泥分離效果。二級分離的lC反應器確保了最佳的污泥停留時間,這樣對于處理一些化工廢水是很有利的,因為這些廢水厭氧污泥產(chǎn)量很小。
IC反應器具有一個自調(diào)節(jié)的氣提內(nèi)循環(huán)結(jié)構(gòu),循環(huán)廢水與原水混合將稀釋進水濃度。內(nèi)循環(huán)作用所帶來的能量使得泥水在底部混合更加充分,從而污泥活性也得到增加。IC內(nèi)循環(huán)所行成的廢水內(nèi)部稀釋可以減少生產(chǎn)所帶來的負荷波動。IC反應器的容積負荷(15-30kgCOD/m3)為UASB(7-15kgCOD/m3)的兩倍。
(文章內(nèi)容來源:山東大禹。登載此文出于傳遞更多信息之目的,并不意味著贊同其觀點或證實其描述,資料及數(shù)據(jù)未經(jīng)核實,僅供參考。)
- 聯(lián)系我們
-
- 全國統(tǒng)一服務熱線
400-086-0510- 企業(yè)郵箱
251677379@qq.com - 全國統(tǒng)一服務熱線